



Microstructure of UHTCMCs



Long rocket nozzle machined by EDM by a block of UHTCMC



Batch of Rocket nozzles prototypes made of UHTCMCs



Rocket nozzle after test showing near zero erosion in the throat

# ULTRA-HIGH TEMPERATURE CERAMIC MATRIX COMPOSITES

### PRODUCTS

UHTCMCs are special ceramic matrix composites created for aerospace applications with superior erosion/ablation resistance and mechanical properties at T>1500°C.

-Properties are highly customizable

-Complex shapes are possible

-The innovative and patented process reduces the manufacturing time to few weeks.

# **PROPERTIES**

Tiles and rocket motors components made of UHTCMCs have been tested above 2000°C presenting a stable performance (near zero erosion) for propulsion and thermal protection system (TRL >5).

Typical properties of UHTCMCs based on zirconium diboride  $(ZrB_2)$  investigated in the frame of the **European project C3HARME** are reported in the Table.

| Typical Properties                     | Units                             | Long<br>fiber-based materials   | Milled<br>fiber-based materials |
|----------------------------------------|-----------------------------------|---------------------------------|---------------------------------|
| Density                                | g/cm <sup>3</sup>                 | 3 – 4                           | 3 - 4                           |
| Porosity                               | %                                 | 1 – 10                          | 1 – 30                          |
| Fibre amount                           | vol.%                             | 40 - 60                         | 40 - 60                         |
| UHTC phase content                     | vol.%                             | 60 - 40                         | 60 - 40                         |
| Young's modulus [25°C]                 | Gpa                               | 200 - 300                       | 100 – 200                       |
| Bending strength [25°C]                | Мра                               | 300 - 500                       | ≤120                            |
| Bending strength [1600-1800°C]         | Мра                               | 400 - 800                       | ≤200                            |
| Toughness [RT-1500°C]                  | MPa·m <sup>1/2</sup>              | 10 – 20                         | 4 - 6                           |
| Retained strength [ $\Delta$ T=1500 K] | MPa                               | 300 - 500                       | 100 – 200                       |
| Interlaminar strength [25°C]           | MPa                               | >50                             | -                               |
| Compression strength [25°C]            | MPa                               | 500 – 700 (//)<br>100 – 200 (T) | ≤500                            |
| Thermal conductivity [25-1950°C]       | W/(m⋅K)                           | 20-30                           | 100 – n.a.                      |
| CTE [25-1300°C]                        | 10 <sup>-6</sup> °C <sup>-1</sup> | 1 – 2 (//) ~8 (T)               | -                               |
|                                        |                                   |                                 |                                 |

# **APPLICATIONS**

- Aerospace parts: near zero erosion Thermal Protection Systems (TPS) and rocket nozzles
- Nuclear parts: fusion walls and divertors
- Other applications: refractory linings for molten metal handling, high temperature shielding, furnace elements, braking systems

#### The spin-off Company

K3RX – Ceramics Extraordinary, is a brand new company launching UHTCMCs in the market Contacts: Giorgio Montanari, CEO, giorgio.montanari@k3rx.com

# Technical contacts @ISTEC

Luca Zoli, <u>luca.zoli@istec.cnr.it</u> Diletta Sciti, <u>diletta.sciti@istec.cnr.it</u>

